skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Yizhou"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. CsYbSe2 has an ideal triangular-lattice geometry with pronounced two-dimensionality, pseudospin-1/2 nature, and the absence of structural disorder. These excellent characteristics favor a quantum spin-liquid realization in this material. In this work, we applied quasihydrostatic compression methods to explore the structural behaviors. Our study reveals that CsYbSe2 undergoes a structural transition around 24 GPa, accompanied by a large volume collapse of ΔV /V0∼13%. The ambient hexagonal structure with the space group P63/mmcis lowered to the tetragonal structure (P4/mmm) under high pressure. Meanwhile, the color of CsYbSe2 changes gradually from red to black before the transition. Dramatic pressure-induced changes are clarified by the electronic structure calculations from the first principles, which indicate that the initial insulating ground state turns metallic in a squeezed lattice. These findings highlight Yb-based dichalcogenide delafossites as an intriguing material to probe novel quantum effects under high pressure. 
    more » « less